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HWRF Coupled Model Structure

« HWRF fully coupled Atmosphere-Ocean-Wave
system will include:
— atriple-nested (27/9/3km) HWRF atmospheric model,
— POM or HYCOM ocean model, and
— a multi-grid WAVEWATCH Il wave model.
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Discussion Outline

e Sea state (wave) dependent drag coefficient

* Wave-induced Stokes drift and upper ocean
mixing

e Wave-induced Coriolis-Stokes effect

* Princeton Ocean Model initialization upgrade



Sea State Dependent
Drag Coefficient

* In the air-sea interface module, the momentum flux
(drag coefficient) is calculated using the wave model
output and a wave-boundary layer model.

 We have examined two momentum flux models,
developed at University of Rhode Island (URI) and
University of Miami (UM) as potential candidates for
the air-sea interface module.



Evaluation of Wave Spectrum in WW3 and Its
Impact on Drag Coefficient in the URI flux model
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Hurricane Ivan (2004) Simulation with
WAVEWATCH and H*WIind Forcing

Hurricane lvan Hs (m) 9/15/2004 07:00 UST
U10 Contours (m/s)

30
29

28

27 |
26 [

25 [

24 o

23

22

21

20




Sea-State Dependent Drag Coefficient
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Drag Coefficient and
Wind Stress - Wind Misalignment
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Stokes Drift Due to Surface Waves
Under Hurricane Conditions

o Surface wave motions introduce net mass
transport, “Stokes drift”, which has the effect of
tilting and organizing the upper ocean turbulent
eddies. The resulting turbulence is called
“Langmuir turbulence”.

 In hurricanes, of particular interest Is the
conditions in which wind is misaligned with waves
at angles greater than 90°. In such cases the
Stokes drift may suppress Langmuir turbulence
and consequent sea surface cooling.



Mixed Layer Kinetic Energy
Measurements In Hurricanes
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Lagrangian floats deployed ahead of Hurricane Gustav (2008)
found reduced vertical kinetic energy in the mixed layer behind
the storm.

Courtesy of Eric D’Asaro



Stokes Drift Calculations in Idealized
Hurricane

 We examine the vertical profile of Stokes drift
under idealized hurricanes.

« WAVEWATCH is used to calculate directional
wavenumber spectra under stationary and

translating hurricanes (at 5 mst and 10 ms),
with a R,=70 km and V=45 ms.

e Stokes drift is calculated from the surface down
to 240 m depth.



Angle difference between wind direction
and Stokes drift direction at z=k
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Coriolis—Stokes Effect

wave direction

Figure from Polton et al. (2005)



Ocean Momentum Equations and
Coriolis—Stokes Forcing

Coriolis-Stokes
Forcing

Wave effect on
momentum flux (Fan
et al., 2010) already
iIncluded in ASIM
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Coriolis—Stokes Forcing Under
ldealized Moving Hurricane
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Coriolis—Stokes/Wind Stress Ratio
Under Idealized Moving Hurricane
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Princeton Ocean Model
Initialization Upgrade

« POM is the ocean component of the GFDL,
GFDN, HWRF operational models

 ltis initialized differently in different ocean
basins:
— Atlantic: GDEM climatology, feature-based
Initialization
— Eastern Pacific: GDEM monthly climatology in GFDL
and HWRF, but NCODA in GFDN

— Western Pacific and other ocean basins: NCODA In
GFDN



NCEP’s RTOFS (operational since 10.25.2011)
based on 1/12° Global HYCOM

Global Temperature (deg C) 20111025 n048 Depth: 0 m
NCEP/EMC/MMAB 25-Oct-2011 max: 33.12 min: -2.49

http://polar.ncep.noaa.gov/global/



2011 Atlantic Hurricane Season
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10/25/11: RTOFS-Global vs. Feature-based
RTOFS-Global Feature-based w/GFS SST
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10/25/11: RTOFS-Global vs. Feature-based
RTOFS-Global Feature-based w/ GFS SST
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Summary

* |In the process of developing of the Air-Sea
Interface Module for HWRF we examined
— 1) sea state dependent momentum flux,
— 2) Stokes drift effect on upper-ocean mixing, and
— 3) Coriolis-Stokes forcing

 Modeling results suggest that behind the
hurricane the Stokes drift may suppress
Langmuir turbulence and consequent sea
surface cooling.



Summary

« Coriolis-Stokes forcing may reduce momentum
flux into the ocean by 15% of the wind stress
near the radius of maximum wind and to the
right of the hurricane center.

e Plans for 2012:

— Implement the air-sea interface module (ASIM) into
the coupled HWRF-WAVEWATCH-POM/HYCOM
system. Insure that all components of ASIM are
modular and can be transitioned to other TC coupled
models, including COAMPS-TC.

— Test the ocean model initialization in GFDL/POM and
HWRF/POM based Global RTOFS.



Ocean Observations Needed for
Coupled Atmosphere-Wave-Ocean
Model Evaluations

« Directional wave spectra (to be available from
WSRA measurements)

 Temperature and current measurements
. Only a few available

In the Atlantic.
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